Optimizing question answering systems by Accelerated Particle Swarm Optimization (APSO)
Authors
Abstract:
One of the most important research areas in natural language processing is Question Answering Systems (QASs). Existing search engines, with Google at the top, have many remarkable capabilities. But there is a basic limitation (search engines do not have deduction capability), a capability which a QAS is expected to have. In this perspective, a search engine may be viewed as a semi-mechanized QAS. Upgrading a search engine such to a QAS is a task whose complexity is hard to exaggerate. To achieve success, new concepts and ideas are needed to address difficult problems which arise when knowledge has to be dealt with in an environment of imprecision, uncertainty and partial truth. QASs are search engines that have the ability to provide a brief and accurate answer to each question in natural language. In other words, the question that a search engine answers with a set of documents, a QAS answers with a paragraph, sentence or etc. In this paper, a solution is proposed to optimize the performance and speed of web-based QASs for answering English questions. As evolutionary algorithms are suitable for issues with large search space, in this approach we have used an evolutionary algorithm to optimize the performance of QASs. In this regard, we have chosen APSO which is a simplified version of PSO. The proposed method consists of five main stages: question analysis, pre-process, retrieval, extraction and ranking. We have tried to provide a method that would be more accurate in choosing the most probable answer from the documents that have been retrieved by the standard search engine and at the same time, be fatser than similar methods. In ranking process, various attributes can be extracted from the text that are used in APSO. For this purpose, in addition to selecting a sentence from the text and examining its attributes, different cut parts of the sentence are selected each time by changing the beginning and end points of the cut part. The attributes which have been used in this study are: 1. Number of unigrams similar to the question words, 2. Number of bigrams similar to the question words, 3. Number of unigrams similar to the question words in the cut part, 4. Number of bigrams similar to the question words in the cut part, 5. Number of synonyms with the question words and 6. Number of synonyms with the question words in the cut part. The fitness function is the weighted sum of these attributes. Top-1 accuracy and MRR are the most valid metrics for measuring the performance of QASs. The proposed method has achieved the accuracy (top-1 accuracy) of 0.527 with respect to the standard dataset and the MRR of it, is 0.711. Both of these results are improved compared to most similar systems. In addition, the time taken to answer the input question in the proposed method, has been significantly reduced compared to similar methods. In general, the accuracy and MRR in this paper have progressed and the system needs less time to find the answer, in comparison with existing QASs.
similar resources
Adaptive Particle Swarm Optimization (APSO) for multimodal function optimization
This research paper presents a new evolutionary optimization model based on the particle swarm optimization (PSO) algorithm that incorporates the flocking behavior of a spider. The search space is divided into several segments like the net of a spider. The social information sharing among the swarms are made strong and adaptive. The main focus is on the fitness of the swarms adjusting to the le...
full textOptimizing Question-Answering Systems Using Genetic Algorithms
In this paper, we consider the challenge of optimizing the behaviour of a question-answering system that can adapt its sequence of processing steps to meet the information needs of a user. One problem is that the sheer number of possible processing sequences the system could use makes it impossible to conduct a complete search for the optimal sequence. Instead, we have developed a genetic algor...
full textCAPSO: Centripetal accelerated particle swarm optimization
Meta-heuristic search algorithms are developed to solve optimization problems. Such algorithms are appropriate for global searches because of their global exploration and local exploitation abilities. Swarm intelligence (SI) algorithms comprise a branch of meta-heuristic algorithms that imitate the behavior of insects, birds, fishes, and other natural phenomena to find solutions for complex opt...
full textParallel Particle Swarm Optimization Algorithm Accelerated by Asynchronous Evaluations
1. Abstract A parallel Particle Swarm Optimization (PSO) algorithm is presented. Particle swarm optimization is a fairly recent addition to the family of non-gradient based, probabilistic search algorithms that is based on a simplified social model and is closely tied to swarming theory. Although PSO algorithms present several attractive properties to the designer, they are plagued by high comp...
full textA Parallel Particle Swarm Optimization Algorithm Accelerated by Asynchronous Evaluations
1. Abstract A parallel Particle Swarm Optimization (PSO) algorithm is presented. Particle swarm optimization is a fairly recent addition to the family of non-gradient based, probabilistic search algorithms that is based on a simplified social model and is closely tied to swarming theory. Although PSO algorithms present several attractive properties to the designer, they are plagued by high comp...
full textParticle Swarm Optimization for Hydraulic Analysis of Water Distribution Systems
The analysis of flow in water-distribution networks with several pumps by the Content Model may be turned into a non-convex optimization uncertain problem with multiple solutions. Newton-based methods such as GGA are not able to capture a global optimum in these situations. On the other hand, evolutionary methods designed to use the population of individuals may find a global solution even for ...
full textMy Resources
Journal title
volume 19 issue 2
pages 161- 174
publication date 2022-09
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023